High–Speed Laser Modulation for Low–Noise Micro–Cantilever Array Deflection Measurement

Author:

Xue Weiwei1,Su Yong2ORCID,Zhang Qingchuan1

Affiliation:

1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

2. School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China

Abstract

In this paper, an innovative approach is introduced to address the noise issues associated with micro–cantilever array deflection measurement systems employing multiple lasers. Conventional systems are affected by laser mode hopping during switching, resulting in wavelength instability and beam spot fluctuations that take several hundred milliseconds to stabilize. To mitigate these limitations, a high–speed laser modulation technique is utilized, leveraging the averaging effect over multiple modulation cycles within the sampling window. By driving the lasers with a high–frequency carrier signal, a low–noise and stable output suitable for micro–cantilever beam deflection measurement is achieved. The effectiveness of this approach is demonstrated by simultaneously modulating the lasers and rapidly observing the spectral and centroid variations during high–speed switching using a custom–built high–speed spectrometer. The centroid fluctuations are also analyzed under different modulation frequencies. The experimental results confirm that the high–speed modulation method can reduce the standard deviation of beam spot fluctuations by more than 90%, leading to significant improvements in noise reduction compared to traditional laser switching methods. The proposed high–speed laser modulation approach offers a promising solution for enhancing the precision and stability of multi–laser micro–cantilever array deflection measurement systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3