Hetero-Optomechanical Crystal Zipper Cavity for Multimode Optomechanics

Author:

Wu Ning,Cui Kaiyu,Feng XueORCID,Liu Fang,Zhang Wei,Huang Yidong

Abstract

Multimode optomechanics exhibiting several intriguing phenomena, such as coherent wavelength conversion, optomechanical synchronization, and mechanical entanglements, has garnered considerable research interest for realizing a new generation of information processing devices and exploring macroscopic quantum effect. In this study, we proposed and designed a hetero-optomechanical crystal (OMC) zipper cavity comprising double OMC nanobeams as a versatile platform for multimode optomechanics. Herein, the heterostructure and breathing modes with high mechanical frequency ensured the operation of the zipper cavity at the deep-sideband-resolved regime and the mechanical coherence. Consequently, the mechanical breathing mode at 5.741 GHz and optical odd mode with an intrinsic optical Q factor of 3.93 × 105 were experimentally demonstrated with an optomechanical coupling rate g0 = 0.73 MHz between them, which is comparable to state-of-the-art properties of the reported OMC. In addition, the hetero-zipper cavity structure exhibited adequate degrees of freedom for designing multiple mechanical and optical modes. Thus, the proposed cavity will provide a playground for studying multimode optomechanics in both the classical and quantum regimes.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3