Affiliation:
1. Materials Science Department, School of Natural Sciences, University of Patras, 26504 Patras, Greece
2. Department of Mechanical Engineering, University of Peloponnese, 26334 Patras, Greece
Abstract
The continuously growing demand for functional plasmonic devices or systems urges the implementation of economical and accelerated nanostructuring techniques. Laser annealing represents a promising approach to address this challenge, given its widespread usage in industry and research, as well as its unique advantages. This study proposes a scalable, rapid, versatile, and cost-efficient method to grow self-assembled nanostructures on metallic ultrathin films and multilayers, with high precision and patterning freedom. By employing industrial-grade equipment, specifically a 1070 nm nanosecond fiber laser and magnetron sputtering system, we directly grew self-assembled nanoparticles on Ag ultrathin films and AgPd multilayers deposited on Corning glass, via laser annealing at ambient conditions. The self-assembled nanoparticles were formed in designated areas by varying several laser parameters and exhibited intense localized surface plasmon resonances. Optical and structural characterization were realized via UV–Vis spectroscopy and atomic force microscopy, respectively. The plasmonic characteristics were found to depend on the initial film thickness and laser annealing parameters. Laser-treated films exhibited remarkable plasmonic behavior, demonstrating that this method does not lack nanostructuring quality while offering scalability and practicality. Further optimization of the laser settings can refine the process and result in an even faster, cheaper, and more qualitative nanostructuring method.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献