Topological Charge of Multi-Color Optical Vortices

Author:

Kotlyar Victor VictorovichORCID,Kovalev Alexey AndreevichORCID,Nalimov Anton Gennadyevich,Stafeev Sergey SergeevichORCID

Abstract

The topological charge of an optical vortex is a quantity rather stable against phase distortions, for example, turbulence. This makes the topological charge attractive for optical communications, but for many structured beams it is unknown. Here, we derive the topological charge (TC) of a coaxial superposition of spatially coherent Laguerre–Gaussian beams with different colors, each beam with its own wavelength and its own TC. It turns out that the TC of such a superposition equals the TC of the LG beam with a longer wavelength, regardless of the weight coefficient of this beam in the superposition and regardless of its TC. It is interesting that the instantaneous TC of such a superposition is conserved on propagation, whereas the time-averaged intensity distribution of the colored optical vortex changes its gamut; if, in the near field, the colors of the light rings arrange along the radius according to their TCs in the superposition from lower to greater, then, on space propagation, the colors of the light rings in the cross-section are arranged in reverse order from the greater TC to the lower TC. We also demonstrate that, by choosing appropriate wavelengths (blue, green, and red) in a three-color superposition of single-ringed LG beams, it is possible to generate, at some propagation distance, a time-averaged light ring of the white color. If all the beams in a three-color superposition of single-ringed LG beams have the same TC, then there is a single ring of nearly white light in the initial plane. Then, on propagation in space, light rings of different colors acquire different radii: a smaller ring radius for a shorter wavelength.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3