Abstract
For bench-top X-ray fluorescence computed tomography (XFCT), the X-ray tube source will bring extreme Compton background noise, resulting in a low signal-to-noise ratio and low contrast detection limit. In this paper, a noise2noise denoising algorithm based on the UNet deep learning network is proposed. The network can use noise image learning to convert the noise image into a clean image. Two sets of phantoms (high concentration Gd phantom and low concentration Bi phantom) are used for scanning to simulate the imaging process under different noise levels and generate the required data set. Additionally, the data set is generated by Geant4 simulation. In the training process, the L1 loss function is used for its good convergence. The image quality is evaluated according to CNR and pixel profile, which shows that our algorithm is better than BM3D, both visually and quantitatively.
Funder
National Key R&D Program of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献