Disturbance-Observer-Based LQR Tracking Control for Electro-Optical System

Author:

Liu Chao1234,Mao Yao123ORCID,Qiu Xiaoxia12

Affiliation:

1. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, China

4. The School of Electronics, Electrical and Communication Engineering, Beijing 101408, China

Abstract

To improve the dynamic property and the disturbance suppression ability of an electro-optical tracking system, this paper presents a disturbance-observer-based LQR tracking control method. The disturbance-observer-based robust controller is composed of three parts: one is the LQR tracking controller, one is the reference model controller and the other is a compensatory controller designed with the output of the disturbance observer. The uncertainty and disturbances are considered in the controller design. By Lyapunov stability theory and linear matrix inequality (LMI) technique, the sufficient conditions for observer gain and controller gain of the tracking reference model of the electro-optical system are given. Simulation and experimental results show that the proposed method in this paper not only improved the disturbance suppression ability of the electro-optical tracking system but also improved the dynamic property of the electro-optical tracking system, such as rise time, settling time and system overshoot. Specially, compared with other methods in this paper, the tracking accuracy and the disturbance suppression ability of the proposed method are about two to three times higher. The method presented in this paper has important reference value in the field of electro-optical system applications. But, with the development of electro-optical system applications, the tracking accuracy and disturbance suppression ability of the proposed method cannot meet the actual requirements of an electro-optical system. The next step of this paper will consider a variety of practical requirements, such as the controller saturation problem and tracking reference target with strong maneuverability, and further optimize the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3