Abstract
The rapid development of neural networks has led to tremendous applications in image segmentation, speech recognition, and medical image diagnosis, etc. Among various hardware implementations of neural networks, silicon photonics is considered one of the most promising approaches due to its CMOS compatibility, accessible integration platforms, mature fabrication techniques, and abundant optical components. In addition, neuromorphic computing based on silicon photonics can provide massively parallel processing and high-speed operations with low power consumption, thus enabling further exploration of neural networks. Here, we focused on the development of neuromorphic computing based on silicon photonics, introducing this field from the perspective of electronic–photonic co-design and presenting the architecture and algorithm theory. Finally, we discussed the prospects and challenges of neuromorphic silicon photonics.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献