Author:
Ching Suetying,Chan Chakming,Ng Jack,Cheah Kokwai
Abstract
Metals are commonly used in plasmonic devices because of their strong plasmonic property. However, such properties are not easily tuned. For applications such as spatial light modulators and beam steering, tunable plasmonic properties are essential, and neither metals nor other plasmonic materials possess truly tunable plasmonic properties. In this work, we show that the silver alloy silver–ytterbium (Ag-Yb) possesses tunable plasmonic properties; its plasmonic response strength can be adjusted as a function of Yb concentration. Such tunability can be explained in terms of the influence of Yb on bound charge and interaction of its dielectric with the dielectric of Ag. The change in transition characteristics progressively weakens Ag’s plasmonic properties. With a spectral ellipsometric measurement, it was shown that the Ag-Yb alloy thin film retains the properties of Ag with high transmission efficiency. The weakened surface plasmon coupling strength without dramatic change in the coupling wavelengths implies that the tunability of the Ag-Yb alloy is related to its volume ratio. The principle mechanism of the plasmonic change is theoretically explained using a model. This work points to a potential new type of tunable plasmonic material.
Funder
Research Grants Council, University Grants Committee
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献