A.I. Pipeline for Accurate Retinal Layer Segmentation Using OCT 3D Images

Author:

Goswami Mayank1ORCID

Affiliation:

1. Divyadrishti Imaging Laboratory, IIT Roorkee, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India

Abstract

An image data set from a multi-spectral animal imaging system was used to address two issues: (a) registering the oscillation in optical coherence tomography (OCT) images due to mouse eye movement and (b) suppressing the shadow region under the thick vessels/structures. Several classical and A.I.-based algorithms, separately and in combination, were tested for each task to determine their compatibility with data from the combined animal imaging system. The hybridization of A.I. with optical flow followed by homography transformation was shown to be effective (correlation value > 0.7) for registration. Resnet50 backbone was shown to be more effective than the famous U-net model for shadow region detection with a loss value of 0.9. A simple-to-implement analytical equation was shown to be effective for brightness manipulation with a 1% increment in mean pixel values and a 77% decrease in the number of zeros. The proposed equation allows the formulation of a constraint optimization problem using a controlling factor α for the minimization of the number of zeros, the standard deviation of the pixel values, and maximizing the mean pixel value. For layer segmentation, the standard U-net model was used. The A.I.-Pipeline consists of CNN, optical flow, RCNN, a pixel manipulation model, and U-net models in sequence. The thickness estimation process had a 6% error compared with manually annotated standard data.

Funder

Department of Science & Technology

Chellaram Diabetic Research Institute Pune India

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3