Optical Absorption Coefficient and Refractive-Index Change in a Coupled Quantum Dot-Metallic Nanoparticle Structure

Author:

Evangelou Sofia1

Affiliation:

1. Department of Physics, School of Applied Mathematics and Natural Sciences, National Technical University of Athens, 157 80 Athens, Greece

Abstract

In the present work, we investigate the problem of the optical absorption coefficient (OAC) and refractive-index change (RIC) in a semiconductor quantum dot placed in the vicinity of a spherical metallic nanoparticle. We derive the total OAC and RIC from the density-matrix equations through different approaches, one without approximations and the other keeping only linear and third-order nonlinear terms. The derived formulae are then applied in a specific hybrid nanostructure to calculate the OAC and RIC. The results obtained from the derived formulae are used to compare cases of various interparticle distance values and applied light intensities and find that, although for specific distances and intensities the formulae may give similar results, in general, they give different results. Moreover, it becomes clear that the distance between the quantum dot and the metallic nanoparticle, in combination with the polarisation of the light field, plays a significant role in the OAC and RIC of the quantum dot. Expressly, conditional on the polarisation of the applied electric field, the OAC and RIC of the quantum dot can be either enhanced or suppressed close to the metallic nanoparticle compared to their values in the absence of the metallic nanoparticle.

Funder

Greece and the European Union (European Social Fund---ESF) and the State Scholarships Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3