Monte Carlo Simulation of Quantum-Cutting Nanocrystals as the Luminophore in Luminescent Solar Concentrators

Author:

Nie Qi1ORCID,Li Wenqing1,Luo Xiao1ORCID

Affiliation:

1. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China

Abstract

Quantum-cutting luminescent solar concentrators (QC-LSCs) have great potential to serve as large-area solar windows. These QC nanocrystals can realize a photoluminescence quantum yield (PLQY) of as high as 200% with virtually zero self-absorption loss. Based on our previous work, we have constructed a Monte Carlo simulation model that is suitable to simulate the performance of the QC-LSCs, which can take into account the band-edge emissions and near-infrared emissions of the QC-materials. Under ideal PLQY conditions, CsPbClxBr3−x:Yb3+-based LSCs can reach 12% of the size-independent external quantum efficiency (ηext). Even if LSCs have a certain scattering factor, the CsPbClxBr3−x:Yb3+-based LSCs can still obtain an ηext exceeding 6% in the window size (>1 m2). The flux gain (FG) of the CsPbClxBr3−x:Yb3+-based LSC-PV system can reach 14 in the window size, which is a very encouraging result.

Funder

National Natural Science Foundation of China

Natural Science Foundation Program of Sichuan Province

Key Teacher Start-Up Research Grant of UESTC

Medical Engineering Innovations Program of UESTC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3