From Localized Laser Energy Absorption to Absorption Delocalization at Volumetric Glass Modification with Gaussian and Doughnut-Shaped Pulses

Author:

Zukerstein Martin1ORCID,Zhukov Vladimir P.123,Meshcheryakov Yuri P.4,Bulgakova Nadezhda M.1ORCID

Affiliation:

1. HiLASE Centre, Institute of Physics ASCR, 25241 Dolni Brezany, Czech Republic

2. Federal Research Center for Information and Computational Technologies, Novosibirsk 630090, Russia

3. Novosibirsk State Technical University, Novosibirsk 630073, Russia

4. Design and Technology Division, Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090, Russia

Abstract

Volumetric modification of transparent materials by femtosecond laser pulses is successfully used in a wide range of practical applications. The level of modification is determined by the locally absorbed energy density, which depends on numerous factors. In this work, it is shown experimentally and theoretically that, in a certain range of laser pulse energies, the peak of absorption of laser radiation for doughnut-shaped (DS) pulses is several times higher than for Gaussian ones. This fact makes the DS pulses very attractive for material modification and direct laser writing applications. Details of the interactions of laser pulses of Gaussian and doughnut shapes with fused silica obtained by numerical simulations are presented for different pulse energies and compared with the experimentally obtained data. The effect of absorbed energy delocalization with increasing laser pulse energy is demonstrated for both beam shapes, while at relatively low pulse energies, the DS beam geometry provides stronger local absorption compared to the Gaussian geometry. The implications of a DS pulse action for post-irradiation material evolution are discussed based on thermoelastoplastic modeling.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3