Affiliation:
1. Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia
Abstract
The phenomenon of the formation of microheterogeneities (MHs) in solutions, which, according to chemical handbooks, are considered true solutions, has been known for a long time. MHs have been found in more than 100 binary solutions, many of which are used both in various scientific studies and in life. However, the nature of this phenomenon is largely unclear. It is only well-known that MHs are stable areas of increased concentration of one of the components of the solution. The main reason for the poor knowledge of MHs is the use of very few experimental methods, mainly light scattering methods. In this paper, the terahertz time-domain spectroscopy method was used for the first time to study MHs using the example of aqueous solutions of three sugars: glucose, fructose, and sucrose. This method gives the spectra of complex permittivity in the terahertz range, which are very informative when studying the hydrate shells of molecules in solutions. The idea of this study was that structuring sugar molecules with the formation of MHs changes their hydration. The characteristics of sugar hydration in solutions before and after filtration through a 20 nm filter, leading to the destruction of MHs, were compared. It has been shown that the water binding in the MHs of all three solutions is increased compared with the hydrate shells of individual sugar molecules. Also, for MHs’ fructose solution, a decrease in the number of hydrogen bonds between water molecules and an increase in the number of free water molecules was shown, which is not observed in MH glucose and sucrose solutions. This is explained by mutarotations of fructose molecules, leading to permanent significant rearrangements of the water structure in MHs. Thus, terahertz time-domain spectroscopy provides fundamentally new information about the MHs of aqueous solutions at the level of their hydration characteristics. The presence of MHs in solutions is a significant factor that has never been taken into account when studying the hydrate shells of various molecules in solutions using THz spectroscopy.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献