Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface

Author:

Jia Xiaozhe1ORCID,Tan Hongrui1,Dong Xinyu1,Ye Fuju1,Cui Haoyang1,Chen Lei1ORCID

Affiliation:

1. College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China

Abstract

In the background of 6G communication requiring a high data rate and energy efficiency, global coverage and connectivity, as well as high reliability and low latency, most existing reconfigurable metasurfaces face limitations in flexibility, integrability, energy consumption, and cost. This paper proposes a dual-polarized intelligent reflection surface (IRS) based on a paper-based flexible substrate as a solution. The proposed design uniquely enables the independent control of two orthogonally polarized electromagnetic waves to achieve customized scattering effects. Compared to conventional reconfigurable intelligent surfaces using PCB technology and active components, this design utilizes paper as the substrate material combined with conductive ink and silver ink, significantly reducing production costs and process complexity. The manufacturing cost is only about one-tenth of the traditional PCB solutions. This approach is not only cost-effective but also excels in both flexibility and portability. These attributes signify its suitability for a broader range of potential applications, encompassing areas where traditional RIS may be impractical due to cost, rigidity, or complexity constraints. By drawing rotationally symmetric small metal block structures on paper using silver ink, four structures are designed that achieve a phase difference of 90 degrees for both x-polarized and y-polarized wave incidences at the resonant frequency of 4.5754 GHz, realizing independent phase modulation. The dual-polarized flexible 2-bit intelligent reflection surface consists of 20×20 unit cells, and six different coding patterns are designed for single-beam and dual-beam design based on different scattering angles. The experimental results show that this polarization-independent flexible 2-bit intelligent reflection surface structure successfully allows independent control of two orthogonally polarized electromagnetic waves, enabling customized scattering effects. The experimental results are highly consistent with the simulation results. The independent control of two orthogonal polarized electromagnetic waves is a key feature of our design, enabling more flexible and effective signal coverage in complex urban environments. This precise control over polarization not only enhances the adaptability of the system but also offers practical solutions for real-world applications, particularly in meeting the growing demands of urban communication. The proposed metasurface based on paper-based flexible substrate is low-cost and highly portable, and the polarization independence provides more degrees of freedom for the metasurface, which is beneficial for more precise and efficient beam control and can be applied in the field of communication, especially 6G communication and IRS wireless communication. In addition, it also has broad application prospects in radar systems and remote sensing applications.

Funder

National Key Research and Development Program of the National Natural Science Foundation of China

SHIEP Foundation

Local Colleges and Universities Capacity Building Program of the Shanghai Science and Technology Committee, China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power screw-assisted reconfigurable reflective metasurface with spatial modulation;International Journal of Mechanical Sciences;2024-07

2. A Comprehensive Review on Beamforming Optimization Techniques for IRS assisted Energy Harvesting;Archives of Computational Methods in Engineering;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3