Wavelength-Tunable Chirped Pulse Amplification System (1720 nm–1800 nm) Based on Thulium-Doped Fiber

Author:

Liu Xinyang1ORCID,Gumenyuk Regina12

Affiliation:

1. Laboratory of Photonics, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland

2. Tampere Institute for Advanced Study, Tampere University, Kalevantie 4, 33100 Tampere, Finland

Abstract

Chirped pulse amplification (CPA) has been a commonly used methodology to obtain powerful ultrashort laser pulses ever since its first demonstration. However, wavelength-tunable CPA systems are much less common. Wavelength-tunable ultrashort and intense laser pulses are desirable in various fields such as nonlinear spectroscopy and optical parametric amplification. In this work, we report a 1720 nm–1800 nm tunable CPA system based on Tm-doped fiber. The tunable CPA system contains a seed laser, a pulse stretcher, two cascaded amplifiers and a pulse compressor. The dispersion-managed seed laser cavity emits wavelength-tunable laser pulses with pulse durations of several ps and spectral widths from 25 nm to 34 nm. After being stretched temporally to tens of ps, the laser pulses are then amplified in two-stage amplifiers and compressed in a Treacy-type compressor. At 1720 nm, the maximum average power of 126 mW is obtained with a pulse duration of 507 fs; at 1800 nm, the maximum average power of 264 mW is obtained with a pulse duration of 294 fs. The pulse repetition rates are around 22.7 MHz. We perform an analysis of the system design based on numerical simulations and go on to suggest further steps for improvement. To the best of our knowledge, this is the first demonstration of a tunable CPA system beyond 1.1 μm. Considering the specific wavelength range, this wavelength-tunable CPA system is highly desirable for biomedical imaging, sensing, and parametric amplifiers.

Funder

European Commission

Research Council of Finland

Publisher

MDPI AG

Reference44 articles.

1. Dicke, R.H. (1953). Object Detection Systems. (US616382A), U.S. Patent.

2. Darlington, S. (1954). Pulse Transmission. (US2678997A), U.S. Patent.

3. Compression of Amplified Chirped Optical Pulses;Strickland;Opt. Commun.,1985

4. Ultrahigh-Intensity Lasers: Physics of the Extreme on a Tabletop;Mourou;Phys. Today,1998

5. Generation of Ultrahigh Peak Power Pulses by Chirped Pulse Amplification;Maine;IEEE J. Quantum Electron.,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3