A Chromatic Dispersion-Tolerant Frequency Offset Estimation Algorithm Based on Pilot Tone for Digital Subcarrier Multiplexing Systems

Author:

Zhang Yuchen1,Chen Xue1ORCID,Yang Tao1ORCID,You Jialin1,Sun Guiqing1,Ji Zhiyuan1,Zhao Yan2

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. State Key Laboratory of Mobile Network and Mobile Multimedia Technology, WDM System Department, ZTE Cooperation, Beijing 100000, China

Abstract

A digital subcarrier multiplexing (DSCM) system has been proposed as a possible solution for large capacity and long-distance coherent optical transmissions due to its high tolerances for chromatic dispersion (CD), equalization-enhanced phase noise (EEPN) and fiber nonlinearity. In a DSCM receiver, for subcarrier-demultiplex to occur properly, frequency offset estimation (FOE) must be implemented before demultiplexing. It is beneficial to decrease complexity and EEPN by compensating CD on each subcarrier. Therefore, a high CD tolerance is indispensable for the FOE algorithm in a DSCM receiver. However, the mainstream blind FOE algorithms for single-carrier systems, such as the 4th power fast Fourier transform algorithm, could not work for DSCM systems. To deal with this challenge, a pilot tone-based FOE algorithm with high CD tolerance is proposed and verified using simulations and offline experiments. The final estimation accuracy of about 10 MHz of the proposed two-stage FOE is achieved at low computational complexity. Simulations and offline experiments show that DSCM systems with the proposed algorithm have a 0.5~1 dB Q-factor improvement over Nyquist single-carrier systems.

Funder

Fundamental Research Funds for the Central Universities

Fund of State Key Laboratory of IPOC

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3