Nonlinear Optical Materials: Predicting the First-Order Molecular Hyperpolarizability of Organic Molecular Structures

Author:

Santos Francisco A.1,Cardoso Carlos E. R.2ORCID,Rodrigues José J.1ORCID,De Boni Leonardo3ORCID,Abegão Luis M. G.2ORCID

Affiliation:

1. Department of Physics, Federal University of Sergipe, São Cristovão 49100-000, Brazil

2. Photonics Group, Institute of Physics, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil

3. Photonics Group, Institute of Physics of São Carlos, University of São Paulo, São Carlos 13560-970, Brazil

Abstract

Experimental nonlinear optics (NLO) is usually expensive due to the high-end photonics and electronic devices needed to perform experiments such as incoherent second harmonic generation in liquid phase, multi-photon absorption, and excitation. Nevertheless, exploring NLO responses of organic and inorganic compounds has already opened a world of new possibilities. For example, NLO switches, NLO frequency converters, and a new way to obtain biological images through the incoherent second harmonic generation (SHG) originate from first-order molecular hyperpolarizability (β). The microscopic effect of the coherent or incoherent SHG is, in fact, the β. Therefore, estimating β without using expensive photonic facilities will optimize time- and cost-efficiency to predict if a specific molecular structure can generate light with double its incident frequency. In this work, we have simulated the β values of 27 organic compounds applying density functional theory (PBE0, TPSSh, wB97XD, B3LYP, CAM-B3LYP, and M06-2X) and Hartree–Fock methods using the Gaussian software package. The predicted β was compared with the experimental analogs obtained by the well-known Hyper–Rayleigh Scattering (HRS) technique. The most reliable functionals were CAM-B3LYP and M06-2X, with an unsigned average error of around 25%. Moreover, we have developed post-processing software—Hyper-QCC, providing an effortless, fast, and reliable way to analyze the Gaussian output files.

Funder

Brazilian Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3