Affiliation:
1. Department of Physics, Federal University of Sergipe, São Cristovão 49100-000, Brazil
2. Photonics Group, Institute of Physics, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil
3. Photonics Group, Institute of Physics of São Carlos, University of São Paulo, São Carlos 13560-970, Brazil
Abstract
Experimental nonlinear optics (NLO) is usually expensive due to the high-end photonics and electronic devices needed to perform experiments such as incoherent second harmonic generation in liquid phase, multi-photon absorption, and excitation. Nevertheless, exploring NLO responses of organic and inorganic compounds has already opened a world of new possibilities. For example, NLO switches, NLO frequency converters, and a new way to obtain biological images through the incoherent second harmonic generation (SHG) originate from first-order molecular hyperpolarizability (β). The microscopic effect of the coherent or incoherent SHG is, in fact, the β. Therefore, estimating β without using expensive photonic facilities will optimize time- and cost-efficiency to predict if a specific molecular structure can generate light with double its incident frequency. In this work, we have simulated the β values of 27 organic compounds applying density functional theory (PBE0, TPSSh, wB97XD, B3LYP, CAM-B3LYP, and M06-2X) and Hartree–Fock methods using the Gaussian software package. The predicted β was compared with the experimental analogs obtained by the well-known Hyper–Rayleigh Scattering (HRS) technique. The most reliable functionals were CAM-B3LYP and M06-2X, with an unsigned average error of around 25%. Moreover, we have developed post-processing software—Hyper-QCC, providing an effortless, fast, and reliable way to analyze the Gaussian output files.
Funder
Brazilian Council for Scientific and Technological Development
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献