Identification of Model Particle Mixtures Using Machine-Learning-Assisted Laser Diffraction

Author:

Villegas ArturoORCID,Quiroz-Juárez Mario A.ORCID,U’Ren Alfred B.ORCID,Torres Juan P.ORCID,León-Montiel Roberto de J.ORCID

Abstract

We put forward and demonstrate with model particles a smart laser-diffraction analysis technique aimed at particle mixture identification. We retrieve information about the size, shape, and ratio concentration of two-component heterogeneous model particle mixtures with an accuracy above 92%. We verify the method by detecting arrays of randomly located model particles with different shapes generated with a Digital Micromirror Device (DMD). In contrast to commonly-used laser diffraction schemes—In which a large number of detectors are needed—Our machine-learning-assisted protocol makes use of a single far-field diffraction pattern contained within a small angle (∼0.26°) around the light propagation axis. Therefore, it does not need to analyze particles of the array individually to obtain relevant information about the ensemble, it retrieves all information from the diffraction pattern generated by the whole array of particles, which simplifies considerably its implementation in comparison with alternative schemes. The method does not make use of any physical model of scattering to help in the particle characterization, which usually adds computational complexity to the identification process. Because of its reliability and ease of implementation, this work paves the way towards the development of novel smart identification technologies for sample classification and particle contamination monitoring in industrial manufacturing processes.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference59 articles.

1. Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species

2. Metal Nanoparticles for Virus Detection

3. Particle Size Analysis in Pharmaceutics: Principles, Methods and Applications

4. Particle size characterization-techniques, factors and quality-by-design approach;Dhamoon;Int. J. Drug Deliv.,2018

5. Particle size analysis in food;Robins,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3