Variations in Lens Thickness Affecting the Anterior Chamber Length and Their Potential Measurement Using a Biometer

Author:

Povedano-Montero F. Javier12ORCID,Bernardez-Villaboa Ricardo1ORCID,Martínez-Florentín Gema1,López-Muñoz Francisco23ORCID,Cedrún-Sánchez Juan E.1ORCID

Affiliation:

1. Optometry and Vision Department, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain

2. Hospital Doce de Octubre Research Institute (i+12), 28041 Madrid, Spain

3. Health Sciences Faculty, Camilo José Cela University, 28692 Madrid, Spain

Abstract

Biometry is a critical aspect of ophthalmology, since it facilitates the measurement of several ocular parameters and aids in the diagnosis of conditions like glaucoma. The advent of the IOLMaster in 1999 marked a pivotal moment in biometry by introducing non-contact and highly precise measurements that revolutionized the field. Low-coherence optical reflectometry devices such as Lenstar LS900 and Aladdin have further advanced biometry, due to the exceptional accuracy they offer. Axial length, a fundamental measurement in biometry, directly correlates with conditions like myopia and glaucoma. The accurate measurement of axial length is crucial for diagnosis and treatment planning. Biometry also guides intraocular lens power calculation during cataract surgery, relying on factors like axial length, anterior chamber depth, lens thickness, and effective lens position (ELP). Ensuring precision in these measurements is essential for optimal surgical outcomes. While several studies have explored biometric parameters, dynamic changes in crystalline lens thickness during rest or accommodation have received little attention. These changes may have a significant effect on the measurement of the anterior chamber length, and consequently impact the overall biometric assessment. This study delves into dynamic biometry, particularly in the context of age-related presbyopia, and aims to assess the feasibility of incorporating into the biometric process a specialized device capable of accurately considering crystalline lens changes during different states like rest and accommodation. This exploration seeks to enhance the understanding of ocular dynamics and contribute to improving the precision of diagnostic and surgical techniques. It underscores the importance of staying at the forefront of biometric research, especially in the context of emerging technologies and their potential to transform ophthalmology.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3