Establishment of Personalized Finite Element Model of Crystalline Lens Based on Sweep-Source Optical Coherence Tomography

Author:

Liu Guangheng,Li Ang,Liu JianORCID,Zhao Yuqian,Zhu Keliang,Li Zhen,Lin Yang,Yan Shixin,Lv Hongyu,Wang Shuanglian,Yu Yao,Wang Yi,Luan Jingmin,Ma ZhenheORCID

Abstract

The virtual lens model has important value in ophthalmic research, clinical diagnosis, and treatment. However, the establishment of personalized lens models and the verification of accommodation accuracy have not been paid much attention. We proposed a personalized lens model establishment and the accommodation accuracy evaluation method based on sweep-source optical coherence tomography (SS-OCT). Firstly, SS-OCT is used to obtain a single lens image in the maximum accommodation state. After refraction correction, boundary detection, and curve fitting, the central curvature radius, thickness, and lens nucleus contour of the anterior and posterior surfaces of the lens were obtained. Secondly, a personalized finite element model improved from Burd’s model was established using these individual parameters, and the adaptation process of the lens model was simulated by pulling the suspensory ligament. Finally, the shape and refractive power changes of the real human lens under different accommodation stimuli were collected and compared with the accommodation process of the finite element model. The results show that the accommodation process of the finite element model is highly consistent with that of the real lens. From the un-accommodation state to the maximum-accommodation state, the difference rate of all geometric and refractive parameters between the two is less than 5%. Thus, the personalized lens finite element model obtained by the calibration and correction of the existing model can accurately simulate the regulation process of a specific human lens. This work helps to provide a valuable theoretical basis and research ideas for the study of clinical diagnosis and treatment of related diseases.

Funder

National Natural Science Foundation of China

Hebei Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3