Going Deeper into OSNR Estimation with CNN

Author:

Shen FangqiORCID,Zhou JingORCID,Huang Zhiping,Li LongqingORCID

Abstract

As optical performance monitoring (OPM) requires accurate and robust solutions to tackle the increasing dynamic and complicated optical network architectures, we experimentally demonstrate an end-to-end optical signal-to-noise (OSNR) estimation method based on the convolutional neural network (CNN), named OptInception. The design principles of the proposed scheme are specified. The idea behind the combination of the Inception module and finite impulse response (FIR) filter is elaborated as well. We experimentally evaluate the mean absolute error (MAE) and root-mean-squared error (RMSE) of the OSNR monitored in PDM-QPSK and PDM-16QAM signals under various symbol rates. The results suggest that the MAE reaches as low as 0.125 dB and RMSE is 0.246 dB in general. OptInception is also proved to be insensitive to the symbol rate, modulation format, and chromatic dispersion. The investigation of kernels in CNN indicates that the proposed scheme helps convolutional layers learn much more than a lowpass filter or bandpass filter. Finally, a comparison in performance and complexity presents the advantages of OptInception.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference47 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3