A Two-LED Based Indoor Three-Dimensional Visible Light Positioning and Orienteering Scheme for a Tilted Receiver

Author:

You XiaodiORCID,Yang Xiaobai,Jiang Zile,Zhao Shuang

Abstract

Conventional visible light positioning (VLP) systems usually require at least three light-emitting diodes (LEDs) to enable trilateration or triangulation, which is infeasible when the LED condition is constrained. In this paper, we propose a novel indoor three-dimensional (3D) VLP and orienteering (VLPO) scheme. By using only two LEDs and two photo-detectors (PDs), our scheme can achieve simultaneous 3D localization and receiver orientation estimation efficiently. Further, to eliminate the location uncertainty caused by receiver tilt, we propose a location selection strategy which can effectively determine the true location of the receiver. Through extensive simulations, it is found that when the receiver faces upwards, the proposed scheme can achieve a mean 3D positioning error of 7.4 cm and a mean azimuthal error of 7.0°. Moreover, when the receiver tilts with a polar angle of 10°, accurate VLPO can still be achieved with 90.3% of 3D positioning errors less than 20 cm and 92.6% of azimuthal errors less than 5°. These results indicate that our scheme is a promising solution to achieve accurate VLPO when there is only two LEDs. Results also verify the effectiveness of the VLPO scheme when locating a tilted receiver.

Funder

National Natural Science Foundation of China

Suzhou Science and Technology Bureau-Technical Innovation Project in Key Industries

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3