Fluorescence Quenching of Carboxy-Substituted Phthalocyanines Conjugated with Nanoparticles under High Stoichiometric Ratios

Author:

Gvozdev Daniil A.ORCID,Solovchenko Alexei E.ORCID,Martynov Alexander G.,Yagodin Aleksei V.,Strakhovskaya Marina G.ORCID,Gorbunova Yulia G.ORCID,Maksimov Eugene G.ORCID

Abstract

Background: The search of the approaches towards a photosensitizer’s conjugation with multifunctional nanoparticles is an important step in the development of photodynamic therapy techniques. Association of photosensitizer molecules with nanoparticles that perform the delivery function can lead to a change in the functional state of the photosensitizer. Methods: We studied the effects observed upon incorporation of octa- and hexadeca-carboxyphthalocyanines of zinc(II) and aluminum(III) (Pcs) into the polymer shell of nanoparticles with a semiconductor CdSe/CdS/ZnS core with various spectral and optical methods. Results: First, the interaction of Pc with the polymer shell leads to a change in the spectral properties of Pc; the effect strongly depends on the structure of the Pc molecule (number of carboxyl groups as well as the nature of the central cation in the macrocycle). Secondly, upon incorporation of several Pc molecules, concentration effects become significant, leading to Pc aggregation and/or nonradiative energy transfer between neighboring Pc molecules within a single nanoparticle. Conclusions: These processes lead to the decrease of a number of the Pc molecules in an excited state. Such effects should be taken into account during the development of multifunctional platforms for the delivery of photosensitizers, including the use of nanoparticles as enhancers of photosensitizer activity by energy transfer.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3