Illustrations of Bessel Beams in s-Polarization, p-Polarization, Transverse Polarization, and Longitudinal Polarization

Author:

Rao A. Srinivasa123

Affiliation:

1. Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan

2. Molecular Chirality Research Centre, Chiba University, Chiba 263-8522, Japan

3. Institute for Advanced Academic Research, Chiba University, Chiba 263-8522, Japan

Abstract

The generation of Bessel beams (BBs) and their characterization in a wide range of the electromagnetic spectrum are well established. The unique properties of BBs, including their non-diffracting and self-healing nature, make them efficient for use in material science and engineering technology. Here, I investigate the polarization components (s-polarization, p-polarization, transverse polarization, and longitudinal polarization) created in scalar BBs owing to their conical wave front. For emphasis, I provide a theoretical analysis to characterize potential experimental artifacts created in the four polarization components. Further, I provide a brief discussion on how to prevent these artifacts in scalar BBs. To my knowledge, for the first time, I can generate vector BBs in s-polarization and p-polarization via the superposition of two orthogonally polarized scalar BBs. This method of generation can provide the four well-known types of vector modes categorized in the V-point phase singularity vector modes. I suggest a suitable experimental configuration for realizing my theoretical results experimentally. The present analysis is very practical and beneficial for young researchers who seek to utilize BBs in light applications of modern science and technology.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference64 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3