Abstract
In this paper, a metal–insulator–metal (MIM) surface plasmon waveguide structure is proposed and numerically investigated. It is composed of a square-ring cavity with a silver baffle, an isosceles triangle cavity, and a bus waveguide with a silver baffle. The results show that the structure can produce triple Fano resonances that can be independently tuned by changing the structural parameters. The detection of refractive indexes at different positions in the structure was also accomplished, with a maximum sensitivity of 2259.56 nm/RIU. On the basis of this, the simultaneous measurement of multiple parameters (plasma concentration and glucose concentration) was performed. The numerical simulation results are beneficial to the applications of MIM waveguide structure in nanosensing and biosensing with time-sharing or simultaneous measurement of multiple parameters.
Funder
Fundamental Research Funds for the Central Universities
Heilongjiang Provincial Natural Science Foundation of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献