Intra-Cavity Raman Laser Operating at 1193 nm Based on Graded-Index Fiber

Author:

Hu Chunhua,Sun Ping

Abstract

Nonlinear Raman frequency conversion is an important technical scheme to obtain special optical band lasers based on conventional ion-doped lasers. In our work, we designed an intra-cavity Raman fiber laser based on graded index fiber (GRIF) as the Raman gain medium. Based on the fundamental-frequency 1080-nanometer laser, efficient first-order and second-order Stokes Raman lasers were obtained, respectively. When the power of the fundamental-frequency 1080-nanometer laser was 33.4 W, the output power of the second-order 1193-nanometer laser was 11.39 W. The corresponding conversion efficiency was 34.1%. To our knowledge, this is the first report of a second-order Raman output based on a GRIF and intra-cavity structure. In the experiment, the spectrum-purification process with the increase in power was also observed. Our experimental results prove that the intracavity Raman-laser system based on graded index fiber with a high optical conversion efficiency has important application potential for obtaining new special-application bands.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3