Affiliation:
1. School of Electronic Information and Electrical Enginering, Chengdu University, Chengdu 130012, China
2. Ultron Photonics, Hangzhou 311200, China
Abstract
The deleterious effect of group delay ripples (GDR) on the performance of a chirped fiber Bragg grating used as a stretcher in a chirped pulse amplification (CPA) laser is analyzed through simulations of CFBGs with various amounts of noise. We show that GDR with a standard deviation of less than one-half the transform-limited pulse duration are required for consistent good performance. We furthermore describe a simple method to measure the group delay response of such CFBGs written in polarization-maintaining fiber, using the beat spectrum of the reflections from the two polarization axes after passing through a polarizer. The method can be used to extract GDR, as well as the phase response of the CFBG, which is used to predict the pulse recompression performance of a CPA laser. The method is theoretically described, and we show that despite limitations on its spatial resolution, it can capture the most deleterious GDR. Experimental measurements of GDR as low as 161 fs in an actual CFBG are demonstrated using our method, indicating a resolution better than 50 fs and very good reproducibility, with pulse recompression performance in agreement with the measurement prediction.