Photoacoustic Detection of Pollutants Emitted by Transportation System for Use in Automotive Industry

Author:

Vafaie Reza Hadjiaghaie,Pour Roya Shafiei,Mohammadzadeh Ardashir,Asad Jihad H.ORCID,Mosavi Amir

Abstract

In photoacoustic spectroscopy, the signal is inversely proportional to the resonant cell volume. Photoacoustic spectroscopy (PAS) is an absorption spectroscopy technique that is suitable for detecting gases at low concentrations. This desirable feature has created a growing interest in miniaturizing PA cells in recent years. In this paper, a simulation of a miniaturized H-type photoacoustic cell consisting of two buffer holes and a resonator was performed in order to detect CO, NH3, NO, and CH4 pollutants. These gases are the main components of the air pollutants that are produced by the automotive industry. The linear forms of the continuity, Navier–Stokes equations, and the energy equation were solved using the finite element method in a gaseous medium. The generated pressure could be measured by a MEMS sensor. Photoacoustic spectroscopy has proven to be a sensitive method for detecting pollutant gases. The objectives of the measurements were: determining the proper position of the pressure gauge sensor; measuring the frequency response; measuring the frequency response changes at different temperatures; studying the local velocity at the resonant frequency; and calculating the quality factor. The acoustic quality coefficient, acoustic response (pressure), local velocity, frequency response, and the effect of different temperatures on the frequency response were investigated. A frequency response measurement represents the fact that different gases have different resonance frequencies, for which CO and NO gases had values of 23.131 kHz and 23.329 kHz, respectively. The difference between these gases was 200 Hz. NH3 and CH4 gases with values of 21.206 kHz and 21.106 kHz were separable with a difference of 100 Hz. In addition, CO and NO gases had a difference of 2000 Hz compared to NH3 and CH4, which indicates the characteristic fingerprint of the designed cell in the detection of different gases. Better access to high-frequency acoustic signals was the goal of the presented model in this paper.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Reference53 articles.

1. Study of Mixed Pollution of Haze and Dust in Jinan Based on LiDAR

2. Session V. Wavefront sensors, control systems and strategies.-Test Bed Systems for AO;Restaino;Proceedings of the 8th International Workshop on Adaptive Optics for Industry and Medicine,2020

3. A disposable bulk-acoustic-wave microalga trapping device for real-time water monitoring

4. The GLO (GFCR Limb Occultation) sensor: A new sensor concept for upper troposphere and lower stratosphere (UTLS) composition and transport studies;Korwan,2019

5. Transport Pathways for Light Duty Vehicles: Towards a 2° Scenario

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3