Abstract
The optomechanics shows a great potential in quantum control and precise measurement due to appropriate mechanical control. Here we theoretically study the quantum phase transition in a hybrid atom-optomechanical cavity with an external force. Our study shows, in the thermodynamic limit, the critical value of quantum phase transition between the normal phase and super-radiant phase can be controlled and modified by the external force via the tunable frequency of optomechanics, then a force dependent quantum phase transition can be achieved in our system. Moreover, this force dependent quantum phase transition can be employed to detect the external force variation. In addition, our numerical simulations illustrate the sensitivity of the external force measurement can be improved by the squeezing properties of the quantum phase transition.
Funder
National Natural Science Foundation of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献