Theoretical Study of Quasi One-Well Terahertz Quantum Cascade Laser

Author:

Wen Boyu,Ban DayanORCID

Abstract

Developing a high-temperature terahertz (THz) quantum cascade laser (QCL) has been one of the major challenges in the THz QCL field over recent decades. The maximum lasing temperature of THz QCLs has gradually been increased, arguably by shortening the length of repeating periods of the quantum structure in the device’s active region from 7 wells/14 layers to 2 wells/4 layers per period. The current highest operating temperature of 250 K was achieved in a two-well direct-phonon design. In this paper, we propose a potential and promising novel quantum design scheme named the quasi one-well (Q1W) design, in which each quantum cascade period consists of only three semiconductor layers. This design is the narrowest of all existing THz QCL structures to date. We explore a series of the Q1W designs using the non-equilibrium green function (NEGF) and rate-equation (RE) models. Both models show that the Q1W designs exhibit the potential to achieve sufficient optical gain with low-temperature sensitivity. Our simulation results suggest that this novel Q1W scheme may potentially lead to relatively less temperature-sensitive THz QCLs. The thickness of the Q1W scheme is less than 20 nm per period, which is the narrowest of the reported THz QCL schemes.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3