Conformational Dynamics of Biopolymers in the Course of Their Interaction: Multifaceted Approaches to the Analysis by the Stopped-Flow Technique with Fluorescence Detection

Author:

Kuznetsov Nikita A.12ORCID

Affiliation:

1. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia

2. Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia

Abstract

This review deals with modern approaches to systematic research on molecular-kinetic mechanisms of damage recognition and removal by pro- and eukaryotic enzymes of DNA base excision repair. To this end, using DNA glycosylases from different structural families as an example—as well as apurinic/apyrimidinic endonuclease, which differs structurally and catalytically from DNA glycosylases—a comprehensive methodology is described in detail regarding studies on the mechanisms of action of DNA repair enzymes in humans and in Escherichia coli. This methodology is based on kinetic, thermodynamic, and mutational analyses of alterations in the conformation of molecules of an enzyme and of DNA during their interaction in real time. The described techniques can be used to analyze any protein–protein or protein–nucleic acid interactions.

Funder

Russian Science Foundation

Russian-State-funded budget project

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3