Affiliation:
1. Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
2. School of Physics, Changchun University of Science and Technology, Changchun 130022, China
Abstract
The variation of shock-wave velocity with time induced by a millisecond-nanosecond combined pulse laser (CPL) on silicon is investigated. The convolution neural network (CNN) is used to predict the shock-wave velocity induced by a single ns laser and CPL with a ns laser energy density of 6, 12 and 24 J/cm2, ms laser energy density of 0 and 226.13 J/cm2, and pulse delay of 0, 0.4 and 0.8 ms. The four-layer CNN model was applied, ns laser energy density, ms laser energy density, pulse delay and time were set as the input parameter, while the shock-wave velocity was set as the output parameter. The correlation coefficient (R2), mean absolute error (MAE) and root mean square error (RMSE) of the CNN model on the test data set was 0.9865, 3.54 and 3.01, respectively. This indicated that the CNN model shows a high reliability in the prediction of CPL-induced shock-wave velocity with limited experimental data.
Funder
National Natural Science Foundation of China
Jilin Provincial Education Department Project
Changchun Science and Technology Development Plan Project
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献