Piston Detection of Optical Sparse Aperture Systems Based on an Improved Phase Diversity Method

Author:

Zhao Yang123ORCID,Li Jiabiao123,Liu Tai123,Tan Xiangquan13,Xu Zhenbang123ORCID,Wu Qingwen123

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of On-Orbit Manufacturing and Integration for Space Optics System, Chinese Academy of Sciences, Changchun 130033, China

Abstract

The piston error has a significant effect on the imaging resolution of the optical sparse aperture system. In this paper, an improved phase diversity method based on particle swarm optimization and the sequential quadratic programming algorithm is proposed, which can overcome the drawbacks of the traditional phase diversity method and particle swarm optimization, such as the instability that results from polychromatic light conditions and premature convergence. The method introduces factor β in the stage of calculating the objective function, and combines the advantages of a heuristic algorithm and a nonlinear programming algorithm in the optimization stage, thus enhancing the accuracy and stability of piston detection. Simulations based on a dual-aperture optical sparse aperture system verified that the root mean square error obtained by the method can be guaranteed to be within 0.001λ (wavelength), which satisfies the requirement of practical imaging. An experimental test was also conducted to demonstrate the performance of the method, and the test results showed that the quality of the image after piston detection and correction improved significantly compared to images with the co-phase error.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3