Capture Dynamics of Dielectric Microparticles in Hollow-Core-Fiber-Based Optical Traps

Author:

Li Kun1,Wang Rui2,Shao Shuangyun1ORCID,Xie Fang1,Jiang Yi2,Xie Shangran2ORCID

Affiliation:

1. School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China

2. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

Abstract

Optical traps formed in hollow-core fibers (HCFs) can overcome several limitations of conventional free-space optical tweezers. One of the key issues is to load particles from free space into the hollow core with high efficiency, in which process the capture dynamics of the particles in front of the HCF endface plays an important role. In this work, a comprehensive model of the trapping and capture process of the dielectric particles in front of HCF is established by taking into account the features of the fiber modes and the motional parameters of the particles. Stable capture positions are predicted based on analytical calculations of optical forces, and the dependencies of the equilibrium axial trapping position on the beam numerical aperture, the fiber core and particle diameters are provided. In addition, the trajectories and the capture dynamics of the particles are studied by solving the equation of motion for the particles under the impact of optical forces, predicting feasible parameter ranges of the initial amplitude and direction of particle launch velocity for achieving successful particle capture in front of HCF. The results can provide guidance for further improving the particle-loading efficiencies of the HCF-based optical traps, which may find applications of flying particle sensors and long-range particle binding in HCFs.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3