Research on Adaptive Transmit Diversity Strategy for Reducing Interference in Underwater Optical Multi-Beam Non-Orthogonal Multiple Access Systems

Author:

Li Yanlong1,Jiang Yutong1,Chen Xiao1ORCID,Jiang Pengcheng1,Li Shuaixing1,Hu Yu1

Affiliation:

1. Ministry of Education Key Laboratory of Cognitive Radio and Information Processing, College of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

With the rapid development of the underwater Internet of Things (IoT), the number of underwater communication nodes is rapidly increasing. The access capacity of a traditional multi-antenna communication system is limited by the number of transmitting antennas, and multi-beam communication systems using non-orthogonal multiple access (NOMA) technology can enhance the access capacity of the system. However, this can lead to serious inter-beam and intra-beam interference. To address the severe issues of inter-beam and intra-beam interference in underwater multi-beam NOMA systems, we propose an adaptive transmit diversity strategy. We design an algorithm for adaptive selection and merging beams based on the degree of interference between beams in space, which merges LED beams with high interference. Diversity technology is used to reduce interference between beams, and spatial multiplexing is still performed between LED groups with low interference. Within the same beam, we use an OFDM-NOMA scheme to match and group the users. Signals from different user groups are sent through different subcarriers to improve resource utilization. This enhances access capacity while reducing NOMA inter-user interference. Simulation results show that the bit error rate (BER) of users with the adaptive transmit diversity strategy satisfies the forward error correction (FEC) limits in the presence of high inter-beam interference and has a better reachable rate and BER performance compared to the multi-beam access system without interference management. We also analyze the system BER performance of the proposed strategy in the multi-user case, and the BER of all 32 access nodes are lower than the FEC threshold at a communication distance of 5 m. This demonstrates that the strategy can effectively reduce the interference of the multi-beam NOMA system.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3