Precision Spectroscopy of Radiation Transitions between Singlet Rydberg States of the Group IIb and Yb Atoms

Author:

Glukhov Igor L.1ORCID,Kamenski Aleksandr A.1,Ovsiannikov Vitaly D.12,Palchikov Vitaly G.23

Affiliation:

1. Faculty of Physics, Voronezh State University, Voronezh 394018, Russia

2. Federal State Unitary Enterprise “VNIIFTRI”, Mendeleevo 141570, Russia

3. Laser Plasma Institute, National Research Nuclear University MEPhI, Moscow 115409, Russia

Abstract

The measurements of microwave (μw) and radio-frequency (RF) radiation quantitative parameters may be based on the quantum–optical approach to determine the spectral characteristics of radiation transitions between the Rydberg states of atoms. Frequencies and matrix elements are calculated for dipole transitions between opposite-parity Rydberg states nL 1L and n′L±1 1L±1 (where n′= n,n±1,n±2) of the singlet series in the alkaline–earth–metal-like atoms of group IIb (Zn, Cd, Hg) and Yb. The matrix elements determine the shifts of Rydberg-state energy levels in the field of resonance μw or RF radiation, splitting the resonance of electromagnetically induced transparency (EIT) for intensely absorbed probe radiation. Numerical computations based on the single-electron quantum defect method (QDM) and the Fues’ model potential (FMP) approach with the use of the most reliable data from the current literature on quantum defect values are performed for frequencies and matrix elements of transitions between singlet Rydberg states of 1S0-, 1P1-, 1D2-, and 1F3-series in Zn, Cd, Hg, and Yb atoms. The calculated data are approximated by polynomials in the powers of the principal quantum numbers. The polynomial coefficients are determined with the use of a standard curve-fitting interpolation polynomial procedure for numerically calculated functions. These approximation expressions provide new possibilities for accurately evaluating the frequencies and matrix elements of dipole transitions between Rydberg states over a wide range of quantum numbers n >> 1, accompanied by the emission and absorption of μw and RF photons.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3