Power Allocation for Reliable and Energy-Efficient Optical LEO-to-Ground Downlinks with Hybrid ARQ Schemes

Author:

Kapsis Theodore T.,Panagopoulos Athanasios D.ORCID

Abstract

Satellites in low earth orbit (LEO) are currently being deployed for numerous communication, positioning, space and Earth-imaging missions. To provide higher data rates in direct-to-user links and earth observation downlinks, the free-space optics technology can be employed for LEO-to-ground downlinks. Moreover, the hybrid automatic repeat request (HARQ) can be adopted since the propagation latency is low for LEO satellites. In this work, a power allocation methodology is proposed for optical LEO-to-ground downlinks under weak turbulence employing HARQ retransmission schemes. Specifically, the average power consumption is minimized given a maximum transmitted power constraint and a target outage probability threshold to ensure energy efficiency and reliability, respectively. The optimization problem is formulated as a constrained nonlinear programming problem and solved for Type I HARQ, chase combining (CC) and incremental redundancy (IR) schemes. The solutions are derived numerically via iterative algorithms, namely interior-point (IP) and sequential quadratic programming (SQP), and validated through an exhaustive (brute-force) search. The numerical simulations provide insight into the performance of the retransmission schemes regarding average power. More specifically, Type I HARQ has the worst output, CC has a moderate one, and IR exhibits the best performance. Finally, the IP algorithm is a slower but more accurate solver, and SQP is faster but slightly less accurate.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3