Ring Resonator Gap Determination Design Rule and Parameter Extraction Method for Sub-GHz Resolution Whole C-Band Si3N4 Integrated Spectrometer

Author:

Hasan Gazi MahamudORCID,Liu Peng,Hasan Mehedi,Ghorbani Houman,Rad Mohammad,Bernier Eric,Hall Trevor J.ORCID

Abstract

A panoramic ultra-high resolution photonic integrated circuit spectrometer is under development by the authors. The architecture comprises a tunable ring resonator (RR) stage and an AWG stage. The resolution defines the bandwidth of the RR, determined by the cross-coupled power and hence the gap between the access and ring waveguides. The AWG channel frequency spacing determines the required free-spectral range (FSR) and hence the perimeter of the ring resonator. The specified <1 GHz resolution combined with an FSR of 50 GHz renders accurate simulation difficult, obstructing the design process. In this report, a simplified design rule to determine the minimum gap between straight access waveguides and a circular ring waveguide is proposed. Realistic assumptions such as the existence of local bisymmetry and adiabatic mode evolution throughout the coupling region permit a simple mode solver to determine the relationship between the cross-coupled power and the minimum gap size. A parameter extraction method is also formulated for add-drop rings equipped with two nominally identical couplers that disentangles the loss and coupling ring parameters from intensity-only transmission measurements. The proposed rule is applied to the design of ring resonators fabricated on a Si3N4 platform. The parameter extraction method is used to analyze the measured characterization data of the ring resonators. The results show good agreement within ~43 nm between the design rule and the gaps size determined by the parameters extracted from the measured data and provide experimental confirmation of the technological viability of the ring resonators required by the spectrometer.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3