High-Precision Low-Cost Mid-Infrared Photoacoustic Gas Sensor Using Aspherical Beam Shaping for Rapidly Measuring Greenhouse Gases

Author:

Hu Qingping12,Ai Yan1,Sima Chaotan1ORCID,Sun Yu12,Feng Zhiyu1ORCID,Li Tailin1,Tong Chen1,Cao Xiaohong1,Wang Wenzhe1,Fan Runze1,Pan Yufeng1,Lu Ping1ORCID

Affiliation:

1. Next Generation Internet Access National Engineering Research Center, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

2. School of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China

Abstract

A high-precision low-cost mid-infrared photoacoustic sensor for greenhouse composite gases based on aspherical beam shaping is proposed and demonstrated. The assembled optical source module and luminous characteristics of infrared source are innovatively investigated and analyzed with aspherical beam shaping. The proposed aspherical-beam-shaping-technique could effectively reduce optical loss and enhance system sensitivity, achieving an effective power utilization ratio of a radiation source of 91% and sidewall noise ratio of 8.9%. Experiments verify the 1.7 times improvement in responsivity and 50% enhancement in minimum detection limit (MDL) on average. In terms of comprehensive greenhouse gas composites and with short integration time of 1 s, MDLs of CO2, CH4, N2O, NF3, SF6, PFC-14, and HFC-134a are 73 ppb, 267 ppb, 72 ppb, 81 ppb, 14 ppb, 9 ppb and 115 ppb, respectively. Furthermore, a 48 h continuous monitoring of H2O, CO2 and CH4 in the atmosphere is conducted and verifies the performance of the gas sensor. The developed sensor allows for the rapid route of low-cost and high-precision detection of multiple greenhouse gases.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3