Performance Evaluation of Non-Lambertian SLIPT for 6G Visible Light Communication Systems

Author:

Ding Jupeng12ORCID,I Chih-Lin3,Wang Jintao4,Song Jian45ORCID

Affiliation:

1. College of Technology and Data, Yantai Nanshan University, Yantai 265713, China

2. Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, School of Computer Science and Technology (School of Cyberspace Security), Xinjiang University, Urumqi 830046, China

3. China Mobile Research Institute, Beijing 100053, China

4. Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China

5. Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Visible light communication (VLC) has emerged as one promising candidate technique to improve the throughput performance in future sixth-generation (6G) mobile communication networks. Due to the limited battery capacity of VLC systems, light energy harvesting has been proposed and incorporated for achieving the simultaneous lightwave information and power transfer (SLIPT) function and for improving the overall energy efficiency. Nevertheless, almost all reported works are limited to SLIPT scenarios adopting a basic and well-discussed Lambertian optical transmitter, which definitely cannot characterize the potential and essential scenarios employing distinctive non-Lambertian optical transmitters with various spatial beam characteristics. For addressing this issue, in this work, SLIPT based on a distinct non-Lambertian optical beam configuration is investigated, and for further enhancing the harvested energy and the achievable data rate, the relevant flexible optical beam configuration method is presented as well. The numerical results show that, for a typical receiver position, compared with about 1.14 mJ harvested energy and a 31.2 Mbps achievable data rate of the baseline Lambertian configuration, a harvested energy gain of up to 1.55 mJ and an achievable data rate gain of 21.1 Mbps can be achieved by the non-Lambertian SLIPT scheme explored here.

Funder

National Natural Science Foundation of China

Tianshan Cedar Project of Xinjiang Uygur Autonomous Region

High-level Talents Introduction Project in Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3