New Method for Measuring the Scattering Phase Function of Micron/Nano Particles

Author:

Li Xingcan1ORCID,Lin Li2,Wang Hongyang13,Shang Zeguo1,Lv Jinyuan1,Hao Yi1

Affiliation:

1. College of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China

2. School of Energy and Power Engineering, Shandong University, Qingdao 266237, China

3. Jilin Polytechnic of Water Resources and Electric Engineering, Changchun 130117, China

Abstract

The scattering phase function is crucial to analyze the light transport in the micron/nano particle suspensions. A new method including a liquid–particle system and reference system is proposed to measure the scattering phase function of the liquid–particle suspensions. In this method, a reference system of a standard particle is used to obtain the correction factor to compensate for the influence of the cuvette. Experimental validation was conducted for monodisperse silicon dioxide microspheres and monodisperse polystyrene microspheres. By considering the influence of the cuvette, both theoretical and experimental analyses prove that the proposed method can achieve a good result in the measurement of the scattering phase function of liquid–particle suspensions for particles with unknown size parameters and optical constants, especially when the size parameter of the particle is larger than 10. The correction factors of scattering light distribution of silicon dioxide microsphere suspensions with various mean particle sizes were obtained and analyzed. This method provides an alternative and simple way of measuring the scattering phase function of micron/nano particle suspensions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3