Numerical Method for the Design of Compact Adiabatic Devices with Multiple Parameter Variations

Author:

Liang Tu-Lu12ORCID,Cheng Xi3,Yu Mei124,Zhang Lingyan124ORCID,Shi Jin124ORCID,Wu Gangxiong124ORCID,Rong Weiwei25,Shao Wei6

Affiliation:

1. School of Information Science and Technology, Nantong University, Nantong 226019, China

2. Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, China

3. School of Computer and Information Engineering, Xinjiang Agricultural University, 311 Nongda Dong Lu, Urumqi 830052, China

4. Nantong Key Laboratory of Advanced Microwave Technology, Nantong University, Nantong 226019, China

5. School of Pharmacy, Nantong University, Nantong 226019, China

6. School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

In this study, a numerical method for designing efficient adiabatic devices with multiple structural parameter variations (NAMSP) is developed. This method can be applied to a wide range of devices based on adiabatic mode evolution structures. The numerical design complexity of multiple structural parameter variations will be greatly improved compared to the case of a single parameter variation. Therefore, an efficient domain decomposition scheme was originally introduced into the NAMSP method. The proposed method can help compute compact adiabatic guided-wave shapes for these adiabatic devices with multiple structural parameter variations. Adiabatic devices with multiple structural parameter variations are used to connect different complex waveguides, which are often difficult to design using analytical methods. The design involves tapering the width of the two or more core layers at one time; however, this change in the width typically affects the mode both vertically and horizontally. Our numerical method allows the shape of the width variation for each layer that facilitates compact adiabatic mode transformation to be obtained. The efficiency of the adiabatic device that was designed using the NAMSP method considerably exceeds that obtained using a linear-shaped device. Moreover, our designed adiabatic device enables an ultra-wide operating bandwidth (spans in the wavelength from 1050 nm to 4780 nm).

Funder

National Natural Science Foundation of China

Nantong Science and Technology Plan Project

Natural Science Research Project of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3