A Straightness Error Compensation System for Topography Measurement Based on Thin Film Interferometry

Author:

Su Hang,Ye RuifangORCID,Cheng Fang,Cui ChangcaiORCID,Yu QingORCID

Abstract

Straightness error compensation is a critical process for high-accuracy topography measurement. In this paper, a straightness measurement system was presented based on the principle of fringe interferometry. This system consisted of a moving optical flat and a stationary prism placed close to each other. With a properly aligned incident light beam, the air wedge between the optical flat and the prism would generate the interferogram, which was captured by a digital camera. When the optical flat was moving with the motion stage, the variation in air wedge thickness due to the imperfect straightness of the guideway would lead to a phase shift of the interferogram. The phase shift could be calculated, and the air wedge thickness could be measured accordingly using the image processing algorithm developed in-house. This air wedge thickness was directly correlated with the straightness of the motion stage. A commercial confocal sensor was employed as the reference system. Experimental results showed that the repeatability of the proposed film interferometer represented by σ was within 25 nm. The measurement deviation between the film interferometer and the reference confocal sensor was within ±0.1 µm. Compared with other interferometric straightness measurement technologies, the presented methodology was featured by a simplified design and good environment robustness. The presented system could potentially be able to measure straightness in both linear and angular values, and the main focus was to analyze its linear value measurement capability.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

The Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao University

Publisher

MDPI AG

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3