Abstract
Photonic spiking neural networks (SNN) have the advantages of high power efficiency, high bandwidth and low delay, but limitations are encountered in large-scale integration. The silicon photonics platform is a promising candidate for realizing large-scale photonic SNN because it is compatible with the current mature CMOS platforms. Here, we present an architecture of photonic SNN which consists of photonic neuron, photonic spike timing dependent plasticity (STDP) and weight configuration that are all based on silicon micro-ring resonators (MRRs), via taking advantage of the nonlinear effects in silicon. The photonic spiking neuron based on the add-drop MRR is proposed, and a system-level computational model of all-MRR-based photonic SNN is presented. The proposed architecture could exploit the properties of small area, high integration and flexible structure of MRR, but also faces challenges caused by the high sensitivity of MRR. The spike sequence learning problem is addressed based on the proposed all-MRR-based photonic SNN architecture via adopting supervised training algorithms. We show the importance of algorithms when hardware devices are limited.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献