Abstract
Mid-infrared (MIR) ultrashort laser pulses have a wide range of applications in the fields of environmental monitoring, laser medicine, food quality control, strong-field physics, attosecond science, and some other aspects. Recent years have seen great developments in MIR laser technologies. Traditional solid-state and fiber lasers focus on the research of the short-wavelength MIR region. However, due to the limitation of the gain medium, they still cannot cover the long-wavelength region from 8 to 20 µm. This paper summarizes the developments of 8–20 μm MIR ultrafast laser generation via difference frequency generation (DFG) and reviews related theoretical models. Finally, the feasibility of MIR power scaling by nonlinear-amplification DFG and methods for measuring the power of DFG-based MIR are analyzed from the author’s perspective.
Funder
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献