Research on the Frequency Stabilization System of an External Cavity Diode Laser Based on Rubidium Atomic Modulation Transfer Spectroscopy Technology

Author:

Wu Yueyang1,Qin Fangjun1,Ding Zhichao2,Xu Rui1,Li Dongyi1

Affiliation:

1. College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China

2. College of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China

Abstract

To achieve high-frequency stability on the external cavity diode laser (ECDL), a 780 nm ECDL serves as the seed light source, and its frequency is precisely locked to the saturated absorption peak of rubidium (Rb) atoms using modulation transfer spectroscopy (MTS) technology. For improving the performance of frequency locking, the scheme is designed to find the optimal operating conditions. Correlations between the frequency discrimination signal (FDS) and critical parameters, such as the temperature of the Rb cell, the power ratio of the probe and pump light, and the frequency and amplitude of the modulation and demodulation signals, are observed to attain the optimal conditions for frequency locking. To evaluate the performance of the frequency-stabilized 780 nm ECDL, a dual-beam heterodyne setup was constructed. Through this arrangement, the laser linewidth, approximately 65.4 kHz, is measured. Then, the frequency stability of the laser, quantified as low as 4.886 × 10−12 @32 s, is determined by measuring the beat-frequency signal with a frequency counter and calculating the Allan variance. Furthermore, using the realized frequency locking technology, the 780 nm ECDL can achieve long-term stabilization even after 25 h. The test results show the exceptional performance of the implemented frequency stabilization system for the 780 nm ECDL.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3