Nonlinear Optical Response of Dispersed Medium Based on Conjugates Single-Walled Carbon Nanotubes with Phthalocyanines

Author:

Vasilevsky Pavel N.12ORCID,Savelyev Mikhail S.13ORCID,Tolbin Alexander Yu.4,Kuksin Artem V.12ORCID,Vasilevskaya Yulia O.25,Orlov Andrey P.26ORCID,Shaman Yury P.25,Dudin Alexander A.2ORCID,Pavlov Alexander A.2,Gerasimenko Alexander Yu.13ORCID

Affiliation:

1. Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Zelenograd, Russia

2. Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 119991 Moscow, Russia

3. Institute for Bionic Technologies and Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia

4. Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia

5. Scientific-Manufacturing Complex “Technological Centre”, 124498 Moscow, Russia

6. The Kotel’nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, 125009 Moscow, Russia

Abstract

Nanosecond lasers have recently been widely involved in human activity. However, high-intensity laser radiation can cause severe damage to organs of vision and expensive photonic devices. Radiation in the near UV range is especially dangerous for human eyes, since it is strongly absorbed by biological media and is also invisible, i.e., the reaction time of the eye to such radiation is much lower than that of visible light. Passive limiters have high transmission (>70%) at a low light intensity and begin to “darken” only when the threshold value of the laser radiation intensity is reached. In this work, we studied liquid nanodispersed nonlinear optical limiters based on hybrids of single-walled carbon nanotubes (SWCNTs) with metal-free tetra(hydroxy)phthalocyanine (OH)4PcHH). The value of the hydrodynamic radius of separate particles after (OH)4PcHH binding increased from 288 ± 55 nm to 350 ± 60 nm, which confirms the attachment of phthalocyanine complexes to nanotubes. The third harmonic of a Nd:YAG nanosecond laser (355 nm, 20 ns) was used to study the nonlinear optical response. Based on a Z-scan with open-aperture and input-output dependence curves, third-order nonlinear optical absorption coefficients of 149, 236, and 229 cm/GW were obtained for dispersions of composites of SWCNTs and (OH)4PcHH in water, dimethylformamide (DMF), and dimethylsulfoxide (DMSO), respectively. Threshold values did not exceed 100 mJ/cm2. The Z-scan showed a gradual decrease in the duration of the laser pulse by 53%; however, near the focus, there was a sharp increase in the duration of the transmitted pulse, reaching a value of 29 ns in z = 0. This phenomenon confirms the occurrence of reverse saturable absorption in the investigated media and can be used in photonic devices to control the temporal characteristics of the signal. Thus, the possibility of protection of sensitive photonic devices and human eyes from nanosecond laser pulses in the near UV range by nanodispersed liquid media based on composites of SWCNTs with (OH)4PcHH has been discussed in this paper.

Funder

Russian Science Foundation

Ministry of Industry and Trade of the Russian Federation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3