Using Planar Metamaterials to Design a Bidirectional Switching Functionality Absorber—An Ultra-Wideband Optical Absorber and Multi-Wavelength Resonant Absorber

Author:

Liao Shu-Han1,Wang Chih-Hsuan2,Ke Pei-Xiu2,Yang Cheng-Fu23

Affiliation:

1. Department of Electrical Engineering, Tamkang University, New Taipei City 251, Taiwan

2. Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan

3. Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan

Abstract

This study aimed to investigate a bidirectional switching functionality absorber, which exhibited an ultra-wideband characteristic in one direction, while in the other direction it demonstrated the absorption of three different resonant wavelengths (frequencies). The fully layered planar structure of the absorber consisted of Al2O3, Zr, yttria-stabilized zirconia (YSZ), Zr, YSZ, Al, YSZ, and Al. The simulations were conducted using the COMSOL Multiphysics® simulation software (version 6.1) for analyses, and this study introduced three pivotal innovations. Firstly, there had been scarce exploration of YSZ and Zr as the materials for designing absorbers. The uses of YSZ and Zr in this context were a relatively uncharted territory, and our research endeavored to showcase their distinctive performance as absorber materials. Secondly, the development of a planar absorber with multifunctional characteristics was a rarity in the existing literature. This encompassed the integrations of an ultra-wideband optical absorber and the creation of a multi-wavelength resonant absorber featuring three resonant wavelengths. The design of such a multi-wavelength resonant absorber holds promise for diverse applications in optical detection and communication systems, presenting novel possibilities in related fields. Lastly, a notable discovery was demonstrated: a discernible redshift phenomenon in the wavelengths of the three resonant peaks when the thickness of YSZ, serving as the material of resonant absorber layer, was increased.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3