Femtosecond Laser Microfabrication of Artificial Compound Eyes

Author:

Zhang Fan1,Xu Huacheng2,Yang Qing3,Lu Yu2,Du Guangqing2,Chen Feng2ORCID

Affiliation:

1. School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China

2. State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China

3. School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Over millions of years of evolution, arthropods have intricately developed and fine-tuned their highly sophisticated compound eye visual systems, serving as a valuable source of inspiration for human emulation and tracking. Femtosecond laser processing technology has attracted attention for its excellent precision, programmable design capabilities, and advanced three-dimensional processing characteristics, especially in the production of artificial bionic compound eye structures, showing unparalleled advantages. This comprehensive review initiates with a succinct introduction to the operational principles of biological compound eyes, providing essential context for the design of biomimetic counterparts. It subsequently offers a concise overview of crucial manufacturing methods for biomimetic compound eye structures. In addition, the application of femtosecond laser technology in the production of biomimetic compound eyes is also briefly introduced. The review concludes by highlighting the current challenges and presenting a forward-looking perspective on the future of this evolving field.

Funder

National Science Foundation of China

International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies

Natural Science Foundation of Shandong Province

Doctoral Research Foundation of Liaocheng University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3