Optimization of Grating Coupler over Single-Mode Silicon-on-Insulator Waveguide to Reach < 1 dB Loss through Deep-Learning-Based Inverse Design

Author:

Lin Chung-Chih12ORCID,Na Audrey2,Wu Yi-Kuei3,Wang Likarn1,Na Neil2ORCID

Affiliation:

1. Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan

2. Artilux Inc., Hsinchu 30288, Taiwan

3. X Development, Mountain View, CA 34043, USA

Abstract

Grating couplers are essential components in silicon photonics that facilitate the coupling of light between waveguides and fibers. Optimization of the grating couplers to reach <1 dB loss when coupling to single-mode fibers (SMFs) has been reported in the literature, but this was based on silicon-on-insulator (SOI) waveguides supporting multi-modes. In this paper, using a deep-learning model combined with an inverse-design process, we achieve <1 dB losses for grating couplers implemented over single-mode SOI waveguides, i.e., a maximum efficiency of 80.5% (−0.94 dB) for gratings constrained with e-beam (EB) lithography critical dimension (CD), and a maximum efficiency of 77.9% (−1.09 dB) for gratings constrained with deep ultraviolet (DUV) lithography CD. To verify these results, we apply covariance matrix adaptation evolution strategy (CMA-ES) and find that while CMA-ES yields slightly better results, i.e., 82.7% (−0.83 dB) and 78.9% (−1.03 dB) considering e-beam and DUV, respectively, the spatial structures generated by CMA-ES are nearly identical to the spatial structures generated by the deep-learning model combined with the inverse-design process. This suggests that our approach can achieve a representative low-loss structure, and may be used to improve the performance of other types of nanophotonic devices in the future.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3